TINT: Towards a Pure Python Augmented Reality Framework

Ulrich Eck*
University of South Australia
Magic Vision Lab

ABSTRACT

This paper describes our software framework, called TINT, which
is targeted towards rapid development of augmented reality appli-
cations. It is entirely written in the Python programming language
and optimized with compiled modules to achieve realtime perfor-
mance without sacrificing simplicity and maintainability. The de-
sign goal for TINT is, to make it possible to develop applications
and framework components in pure Python code. This increases the
productivity of the developer and is less error-prone.

TINT implements a set of components: dataflow network with
hardware sensors, video-capturing, record / playback functionality,
presentation library with compositing, networking, and application
classes.

In this paper we give a high level overview of TINT and compare it
with existing frameworks and libraries. We also elaborate in detail
on our techniques to support realtime augmented reality applica-
tions written in pure Python and give some examples its usage.

Index Terms: H.5.1 [Multimedia Information Systems]: Arti-
ficial, augmented, and virtual realities—; D.3.2 [Language Clas-
sifications |: Python, C, C++—; D.3.3 [Language Constructs and
Features]: Frameworks—; D.2.10 [Design]: Rapid Prototyping—

1 INTRODUCTION

Many mature frameworks and libraries for research and de-
velopment of augmented reality (AR) and mixed reality (MR)
applications are available today. However, it is difficult to get
most of them running on a specific platform, because of their
dependent libraries which need to be installed in a supported
version. Furthermore, most frameworks are quite complex to
get started with for novice developers and still won’t allow even
advanced programmers to reach their goals quickly.

The problem arises mostly from using compiled and statically
typed programming languages which require linking against their
dependencies and do not support modifications at runtime unless a
plugable component architecture is used or created. On the other
hand, interpreted, dynamically typed programming languages are
known to be slow in execution speed and therefore are not suitable
for realtime graphics applications.

To overcome these drawbacks, we decided to implement a new
framework using a dynamically typed scripting language. As
Python has a very clear syntax, is object-oriented, platform
independent, and simple to extend with custom binary modules,
we decided to implement the core framework of TINT entirely in
this programming language. Furthermore we followed the design
principles for Python as stated in The Zen of Python™! to create a
framework that feels pythonic? when used. Bruce Eckel said in his
keynote [5], that development done in Python is 5-10 times more

*e-mail: ueck @net-labs.de
fe-mail: Christian.Sandor@unisa.edu.au

Mttp://www.python.org/dev/peps/pep-0020/
2http://cafepy.com/article/59/

Christian Sandor"
University of South Australia
Magic Vision Lab

productive and less error-prone.

TINT is still capable of running AR and MR applications in
realtime on most laptop computers, with decent graphics card,
because we are offloading computational intensive tasks to either
the graphics card, one of the few dependent libraries like numpy?,
or custom platform-independent python modules that are written
in Cyth0n4, C, or C++. Our framework reduces the number of
required, binary dependencies to a minimum of four standard
libraries and does not force the developer or user of an application
to install libraries which are not used.

The rest of the paper is structured as follows: Section 1.1 describes
our contribution. Section 2 compares our work with existing
frameworks and libraries. Section 3 shows options for Python
- C/C++ interoperability and gives a detailed overview of our
components and how they work together. Section 4 provides some
examples and Section 5 finally states our conclusions and what we
plan to improve in future versions of TINT.

1.1 Contribution

Using the Python programming language in AR and MR appli-
cations is not new. Other frameworks that use Python, either use
it only to implement single components (DWARF [3]), or use a
wrapped C++ framework to make the components available in
Python (Panda3D [8], AvangoNG [12]). We designed TINT in the
spirit of frameworks like Panda3D, but we’ve taken the ideas one
step further: First, we decided, that we want to develop as many
components as possible in Python. Second, we wanted to increase
the development efficiency (see Section 3.1). Third, we wanted
unrestricted interactive shell access (see Section 4.2).

Our contribution is to demonstrate that almost pure Python AR
and MR frameworks are possible and desirable. The framework
was written from scratch in approximately two man-months
development time. It was used to efficiently create a mobile MR
navigation system [17]. New team members were able to get
started and contribute to the development within less than a week.
This is a remarkable improvement over other existing frameworks.
In cases, where the Python implementation is not fast enough,
critical code blocks are optimized using Cython. Numeric array
operations written in Cython for example, execute up to 500 times
faster than a pure python implementation [20].

Our approach might also be interesting for other research projects,
which often work with students, making flexibility and simplicity
the key design goals of a software framework.

2 RELATED WORK

The scope of TINT is similar to MRPlatform [18], which provides
a complete framework for developers of AR and MR applications
with sophisticated abstraction and separation of concerns. It is
also comparable to frameworks like Panda3D [8], and AvangoNG
[12] as it utilizes the Python programming language to ease
the development of AR applications and provides a rich set of
predefined components to build on. However TINT lacks features

3http://numpy.scipy.org/
4http://www.cython.org/

like calibration/registration tools, support for high end hardware
like head mounted displays, and does currently not provide a full
scenegraph implementation.

The design of our dataflow network as acyclic directed graph of
nodes, was inspired by OpenTracker [16] and UNIT [15] in respect
to flexibility and configurability; but, it is much easier to use
and extend and does not try to adapt to distributed environments
transparently. For example a simple source object in Opentracker
needs 3 files with about 100 lines of code (LOC) (taken from "How
to use Opentracker”s), while a similar sensor in TINT requires one
file with 15 LOC (see Section 4.1).

Finally, our presentation layer was inspired by the work of [10].
In their work on interactive focus and context visualizations for
AR, they used shaders to combine rendered layers using frame
buffer objects (FBOs). TINT provides a set of components, that
simplify the usage of these technologies and allow developers to
create advanced graphics output without knowing all the details of
OpenGL FBOs and the necessary infrastructure to do compositing
on the graphics card using shaders.

Based on the ubiquitous computing survey [6], we provide a record
for TINT to ease the comparison of our framework with other
existing frameworks and libraries in Appendix A.

3 SYSTEM DESIGN

Section 3.1 gives an overview of available options to provide
Python - C/C++ interoperability and how to increase the speed of
execution for computational intensive tasks. A detailed decompo-
sition of our framework components is given in Section 3.2.

3.1 Python - C/C++ Interoperability

To make a Python application suitable for realtime applications
with rich 3D graphics and video streams, the processing of large
arrays of data must not be done directly in Python, but offloaded
to optimized, external modules. Running the application logic and
simple data processing on the other hand is not a problem with
refresh rates commonly used in AR applications.

A developer usually starts implementing an algorithm in Python. If
the resulting code is not fast enough, it can eventually be optimized
by using special data types, like numpy ndarrays. Finally, if the
code contains loops over large lists or array operations, small code
blocks need to be optimized using a compiled language. We needed
a simple way of creating optimized, binary modules that extend
our framework. Only time intensive calculations are replaced with
compiled code, so that the flexibility which is provided through
Python is still a benefit.

To be able to implement algorithms for array manipulations like
computer vision or image manipulation we decided to use the
Cython language. The Cython language is very close to the Python
language, but Cython additionally supports calling C functions and
declaring C types on variables and class attributes. This allows the
compiler to generate very efficient C code from Cython code.
There is also active development towards a fast just in time (JIT)
compiler for Python. The PyP;/ project® adds a JIT for restricted
Python code. Unladen-swallow’ a Python implementation using an
LLVM based JIT, which enables further speed up in future without
the need of binary modules at all.

Access to existing libraries like libdc1394® for video capturing
or other drivers for external hardware like trackers or input

Shttp://studierstube.icg.tu-graz.ac.at/
opentracker/html/howto_opentracker.pdf

Shttp://codespeak.net/pypy/dist/pypy/doc/

"http://code.google.com/p/unladen-swallow/

8http://damien.douxchamps.net/ieeel394/
1ibdc1394/

Application

Controllers

Networking N Shell
DataStore

3D Model

Video
Capture

Record
Playback

P

Visualizations

‘ UserlInterface
Framebuffers
Textures

Composer,

Processors

Sensors

Actor

Figure 1: Functional Decomposition of TINT Components. Arrows
denote dataflow

devices is also required. We evaluated numerous tools that enable
interoperability between Python and libraries written in C/C++.
There are different ways to access external libraries:

Wrappers take some information from a header- and/or
specification-file and create C/C++ code which is then compiled
into a Python module. They usually produce fast code with
transparent object conversion, but it can be tedious to create the
specification files; examples are Swig [4] and SIP?.

Foreign Function Interfaces (FFIs) can directly use external
binary libraries without the need of compiling a module. This is
very convenient when optional libraries are accessed. Compared
to wrappers the calling overhead is higher, as object conversion
needs to be done in Python. There is a default FFI implementation
available in Python called ctypes'©.

Libraries require the framework to be implemented in a specific
way, so that the library tools can automatically generate Python
interoperability. They are usually as fast as wrappers and provide
transparent object conversion. The need to create the framework so
that is compatible with the library on the other hand, reduces the
flexibility, increases complexity or the resulting wrapper feels less
pythonic when used. Some libraries need to be recompiled even for
minor modifications, which can slow down the development cycle.
Examples are Boost.python!! and Interrogate from Panda3D [8]
for C++ interoperability.

Native modules are implemented in C using the Python extension
module API [19]. This tends to be error-prone as the developer
needs to take care of topics like threading and reference counting
when implementing the module. They are fast, but much more
work to implement.

We decided to use the FFI ctypes because it does not require com-
pilation. Therefore, optional dependencies can be ignored when
installing TINT onto a new computer, when certain functionality is
not required.

3.2 System Decomposition

The big picture of our framework components is shown in Fig-
ure 1. They can be grouped into three categories: dataflow com-
ponents (left), core components (center), and presentation compo-
nents (right). In the following sections we describe the components
of each category and how they work together.

‘http://www.riverbankcomputing.com/software/sip
Onttp://docs.python.org/library/ctypes.html
Uhttp://www.boost.org/

3.2.1 Core Components

A TINT application is developed using the model view controller
(MVC) pattern. The main application provides a context to access
the model data, for example textures, 3D geometries, and other en-
tities. Controllers process information received from the dataflow
network and define the behavior of a TINT application. They are
usually implemented using finite state machines and extend pre-
defined controller classes. The views are implemented using the
presentation components (see Section 3.2.3).

The configuration library ZConfig '2 is used to setup the compo-
nents from configuration files. All applications automatically come
with a command line interface, so that there is a uniform way to run
TINT applications. To store and retrieve tabular application data,
the object relational mapper SQLAlchemy'3 with support for vari-
ous relational database systems has been integrated.

Most graphical user interface (GUI) libraries allow modifications
to their state only from within their own event loop, which causes
problems when the application needs to react immediately on
events like incoming packets of a network connection. An appli-
cation that uses threading extensively is difficult to implement be-
cause of synchronization issues with the GUI event loop. We de-
cided to implement TINT with two event loops, each one running in
a separate thread, as shown in Figure 2: The GUI’s main event loop
that runs all operations as blocking function calls to handle GUI
/ OpenGL related tasks and an asynchronous event loop for things
like network communication and hardware access. These two event
loops are synchronized from within the GUI event loop to ensure
all modifications are made in the right context. This approach is
similar to the hybrid programming model described in [13], but
we don’t try to unify both concepts transparently into a program-
ming model. The asynchronous event loop is implemented using a
Twisted Reactor [11]. Twisted implements various TCP and UDP
network protocols out of the box and it is fairly simple to write your
own protocols. We implemented the open sound control'* (OSC)
protocol to enable remote control of application parameters (see
Section 4.3). To enable ad hoc peer to peer (P2P) communication,
a multicast DNS service discovery (M-DNS SD) client is integrated
using pybonjour!?

External components can be adapted to the system in several ways:
A custom protocol can be implemented using Twisted, and inte-
grated into the asynchronous eventloop, so that the external compo-
nent is directly accessed over the network. Alternatively, an existing
driver module can be integrated into the framework; if non-blocking
read and write operations are supported, it can be integrated into
the asynchronous eventloop, in other cases, blocking calls from the
gui eventloop, or synchronized threads are used. Finally a custom
wrapper can be created using one of the python interoperability op-
tions mentioned in Section 3.1

Video images are captured from the attached camera and provided
to the data processors and application controllers in realtime. We
currently support Firewire cameras on Linux/OSX and Quicktime
Capturing on OSX. Our libdc1394 driver is implemented in pure
Python using ctypes to access the external library. To effectively
process the captured video image buffers, we use the ctypes prop-
erty of numpy ndarrays to transfer the buffer into a shaped array
on a C-level for further processing. This way, the large arrays of
data are not directly accessed from Python and capturing runs at
the speed of a binary driver module. The configuration and control
of the library is done through regular Python calls as they do not
involve larger amounts of data to be transferred.

Furthermore, there are tools to support the developer: an interac-

Phttp://www.zope.org/Members/fdrake/zconfig/
Bhttp://www.sqlalchemy.org/
Ynttp://www.opensoundcontrol.org/
Bhttp://code.google.com/p/pybonjour/

Pyglet Twisted

Eventloop Eventloop
synchronized with
threadsafe command queue
synchronous asynchronous
blocking non-blocking

eventloop

@n“y

OpenGL display / idle

Keyboard / Mouse handling
Application / Ul Controllers
SensorManager / DataProcessors
Sensors (blocking)

VideoCapture (blocking)

Network Services

Sensors (non-blocking)
VideoCapture (non-blocking)
Scheduled Tasks

Figure 2: Synchronized Event Loops

tive application shell (see Example 4.2)) and a realtime data stream
recorder / player (see Section 3.2.2). These tools are available in all
TINT applications as they are provided by the core components.

3.2.2 Dataflow Network

Similar to Opentracker’s approach of using XML files to specity
the acyclic graph of source and filter objects, TINT loads its
data from the application configuration to set up the dataflow.
Sensors (source objects) represent local or remote input devices
like trackers, Intersense Cube3 Gyro, GPS devices or Phidgets
[9]. Dataprocessors (filter objects) can be used to combine and
process data streams from sensors and other dataprocessors. All
node types can be implemented with non-blocking, blocking, or
threaded behavior, so that external devices can be easily integrated
into the framework.

A Sensormanager controls the life cycle of dataflow network
nodes and collects information from them when requested by the
application controller. It also integrates transparently with the
record / playback functionality of the core application classes to
support configurable record and playback of data streams. This
allows the developer to replay recorded sessions and optimize
algorithms on computers without having connected the hardware
that is required to run the application.

To record a set of sensor-data- and video-streams, we dynamically
create a HDFS [7] database schema for the dataflow network
using pytables!®[1] and subsequently append data to the tables
with time stamps. When a session is played back, the original
sensor nodes are replaced by playback nodes, which are configured
from the metadata in the recorded session. The sensor-data and
video-streams are then played back in realtime by subsequently
reading the tables contents and setting it as sensor output.

3.2.3 Presentation Components

The view components use the cross platform multimedia library py-
glet!” to provide the graphic context. Views itself are very simple
and do not make any assumptions on how the developer will out-
put graphics. Advanced rendering techniques like GLSL shaders
and render buffers are supported. The output of a single view is
usually rendered into an FBO; the resulting FBOs are then com-
bined in the compositing component before being presented to the
user. The default composting component is a GLSL shader that
combines the FBOs using alpha blending as illustrated in Figure 3.

nttp://www.pytables.org/
Thttp://www.pyglet.org/

Render Framebuffer
Ma'in Objects

Video

Texture

Rendered

Scene
XRay

Overlay
Menu

Overlay

Compositing Shader
(default: AlphaBlend overlays

set other shader inputs _

compose _

Figure 3: Compositing Component

Advanced compositing components can support techniques like X-
ray vision [2] by supplying shader logic that combines the output
of the camera texture with the occluded object based on metadata
that is provided by the view. Our framework also includes a simple
scenegraph implementation that enables loading, querying, and dis-
playing of geometries with textures, and a simple animation engine.

4 EXAMPLES

In this section we show how to create a minimal sensor node
and how to change the implementation of such a node at runtime
using the interactive Python shell. Finally we describe an iPhone
controller example that can be used to interact with a TINT
application over a wireless network.

4.1 Minimal Sensor Node

This example illustrates a simple sensor node for the dataflow
network, that can be loaded from an application configuration file.
This sensor outputs a constant tuple of float values which were
specified in the configuration. The implementation of such a sensor
needs only 15 LOC:

from TINT.sensor import AbstractSensor, NotStartedException

class ConstantFloatSensor (AbstractSensor) :
" Float Sensor with constant output. """

def __init__(self, name, value=()):
" class constructor. """
super (ConstantFloatSensor, self).__init__ (name)
self._current_value = tuple([float32(v) for v in value])

@classmethod
def fromzZConfig(cls, cfg):
" config helper """
return cls(cfg.name, value=cfg.values)

def describe_output (self):
" describe output for constant float sensor. """
return tuple ([(‘val%d’ % i, ’float32’) \
for i in range(len(self._current_value))])

def update (self):
" just output a constant value. """
if self.running == False:
raise NotStartedException (self.name)
return self._current_value

The AbstractSensor base class implements all necessary logic
to integrate with the life cycle management of the sensor manager.

Only two methods need to be implemented: describe_output
provides information on what type of data the receiving component
has to expect and update returns the current value as a tuple to
the caller.

To register the new sensor with the ZConfig configuration library,
an entry in the schema is required:

<sectiontype
name="ConstantFloatSensor"
datatype=".sensor.ConstantFloatSensor.fromZConfig"

implements="TINT.Sensor"
extends="AbstractSensor">
<description>constant output sensor.</description>

<multikey

name="Value"

datatype="float"

attribute="values"

required="no">

<description>A List of Values.</description>
</multikey>

</sectiontype>

The schema is used to validate given configurations, and to
instantiate the specified components into a tree of nodes. An
example configuration to set up such a sensor would look like:
<SensorManager>

<ConstantFloatSensor>
name demo_sensor
value 1.0
value 2.0
value 3.0
</ConstantFloatSensor>

</SensorManager>

4.2 Interactive Python Shell

While experimenting with new algorithms, the developer often
needs to change the behavior of the newly created component.
Some frameworks, e.g. DWAREF [3], allow to parameterize com-
ponents and modify these parameters during runtime. If the im-
plemented algorithm needs to be revised, the developer needs to
recompile, and restart the application. This can be tedious when
trying to enhance parts like tracking quality or other improvements
with visual feedback.

Our framework implements an interactive Python shell that is avail-
able locally or through a network connection using telnet or ssh.
Once the user opens such an interactive Python shell, they are pre-
sented a command prompt similar to starting the interpreter from
the command line. The interactive shell binds a context that allows
the developer to access the instantiated components of the running
application instantly. Using this feature, the developer can mod-
ify parameters by setting the relevant attributes directly to new val-
ues. Furthermore it is possible to change the implementation of
instances or classes due to Python’s dynamic nature. A new im-
plementation could be activated by using the reload command in
Python to reimport a modules implementation from a file or it can
be done interactively as shown below:

Accelerometer:
Pitch / Roll

. Slider:
Yaw

Tactile Zone:
Move X/ Z

Figure 4: Our iPhone controller can be used to conveniently simulate
components. This example shows a 5DOF sensor input as tracker
replacement.

>>> sl = sensormanager.get_sensor (' demo_sensor’)
>>> sl.update ()
(1.0, 2.0, 3.0)
>>> old_func = sl.update
>>> def new_func(self):
return tuple([xx2.0 for x in old_func(self)])

>>> sl.update =
>>> sl.update ()
(2.0, 4.0, 6.0)

new_func

In the first line, a reference to the demo_sensor is assigned to
the variable s1 and the second command fetches the current value
from the sensor. The next line assigns a reference of the function
object update to the variable o1d_func. Then a new implemen-
tation new_func of update is defined, which doubles the values
of the tuple returned from the old implementation old_func. It
is activated by overwriting the update attribute for this specific
instance s1 of the demo_sensor. The last line finally fetches the
current value from the modified sensor.

When the modifications are sufficient, the code snippet can be
copied into the source file of the sensor. This option applies to
all framework classes that are implemented in Python.

4.3 iPhone Controller

Our iPhone controller can be used to remote control a running TINT
application. It is similar to a personal unified controller (PUC), as
described in [14]. The controller automatically connects to the ap-
plication and creates an application specific user interface.

The client application is realized with the Mrmr Client'® on an
iPhone. It automatically connects to the TINT application using
a M-DNS SD request and uses the Mrmr protocol to talk to the ap-
plication. The Mrmr protocol is an extension to the OSC protocol,
which defines a user interface description language and a naming
scheme for the transferred data. A Mrmr sensor component in a

Bnttp://poly.share.dj/projects/#mrmr

TINT application defines a schema for automatically creating the
UI and mapping back the incoming data to the sensors output.

The implementation of this feature took only two days. During
the development of our mobile MR navigation system [17], it was
extremely useful. When developers wanted to experiment with out-
door user interface ideas at their desktop PCs, they needed to simu-
late outdoor trackers. Our iPhone controller (see Figure 4) enabled
them to do this conveniently: Roll, pitch, and yaw simulate input
from a Gyroscope; X and Z movement simulate GPS tracking. GPS
measurements in the up-direction (Y) were too unreliable for our
purposes; therefore, we have hardcoded them to the typical height
of a human (1.80 meters).

5 FUTURE WORK AND CONCLUSIONS

We have presented our framework TINT for rapid prototyping
of AR and MR applications. Due to its clean and simple im-
plementation it is easy to get started with and simple to extend.
Our framework has been successfully used to create several
smaller tools and a mobile MR navigation system [17]. The
navigation system runs at 20 fps on an Intel Pentium-M 2.0 GHz
computer with Nvidia GeForce 6600 graphics; Videos and detailed
information can be found on our website!?.

While this has been a great success for the framework, we realized
that there are several things that should be improved: we favored
a simple inheritance paradigm to build the framework classes.
A better approach is to use the interface and adapter patterns to
decouple the implementation while improving the interoperability
of the framework components. An event dispatcher should be used
to further decouple the components. Furthermore, a sophisticated
scenegraph implementation is needed for rapid prototyping. Exist-
ing components will be extracted from our applications and added
to the framework, to increase the amount of reusable components
and device drivers. As most core components are completely
platform independent, a working version for Windows will be
implemented soon, together with some native device drivers.

In the future we plan to integrate a CUDA or OpenCL adapter to
enable offloading of computational intensive image manipulation
and tracking tasks directly to the GPU and therefore minimize
the need of custom extension modules. As the Python language
evolves and has reached the version 3.1 recently, new features are
available; e.g. new buffer interface that is integrated directly into
the language which will simplify the transfer of large array data
between external libraries and numpy arrays. These features can
be used once our main dependencies reach a stable version which
is compatible with Python 3.1. Other research projects like JIT
compilation of Python code using PyPy to speed up pure python
modules as described in [13] need to be investigated, as they tend
to be even more pythonic than our current prototype.

REFERENCES

[1] F. Alted. Keynote: On the data access issue (or why modern cpus are
starving). EuroSciPy, 2009.

[2] B. Avery, C. Sandor, and B. H. Thomas. Improving spatial perception
for augmented reality x-ray vision. In Proceedings of IEEE VR, pages
79-82, March 2009.

[3] M. Bauer, B. Briigge, G. Klinker, A. MacWilliams, T. Reicher, C. San-
dor, and M. Wagner. An architecture concept for ubiquitous comput-
ing aware wearable computers. In Proceedings of ICDCSW, pages
785-790, Washington, DC, USA, 2002. IEEE Computer Society.

[4] D. M. Beazley. Swig: an easy to use tool for integrating scripting
languages with ¢ and c++. In Proceedings of USENIX TCLTK, pages
15-15, Berkeley, CA, USA, 1996. USENIX Association.

[5] B. Eckel. Keynote at the 9th international python conference. 2001.

Yhttp://www.magicvisionlab.com/projects/mars/

[6] C.Endres, A. Butz, and A. MacWilliams. A survey of software infras-
tructures and frameworks for ubiquitous computing. Mob. Inf. Syst.,
1(1):41-80, 2005.

M. Folk, R. McGrath, and N. Yeager. Hdf: an update and future di-

rections. In Proceedings of IEEE IGARSS, volume 1, pages 273-275

vol.1, 1999.

[8] M. Goslin and M. R. Mine. The panda3d graphics engine. Computer,

37(10):112-114, 2004.

S. Greenberg and C. Fitchett. Phidgets: easy development of physical

interfaces through physical widgets. In Proceedings of ACM UIST,

pages 209-218, New York, NY, USA, 2001. ACM.

D. Kalkofen, E. Mendez, and D. Schmalstieg. Interactive focus and

context visualization for augmented reality. In Proceedings of ISMAR,

pages 1-10, Washington, DC, USA, 2007. IEEE Computer Society.

K. Kinder. Event-driven programming with twisted and python. Linux

J.,2005(131):6, 2005.

R. Kuck, J. Wind, K. Riege, and M. Bogen. Improving the avango

vr/ar framework: Lessons learned. In Virtuelle und Erweiterte Realitdit

: 5. Workshop der GI-Fachgruppe VR/AR, Magdeburg, DE, 2008.

[13] P. Li and S. Zdancewic. Combining events and threads for scal-

able network services implementation and evaluation of monadic,

application-level concurrency primitives. In Proceedings of ACM

PLDI, pages 189-199, New York, NY, USA, 2007. ACM.

J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris,

R. Rosenfeld, and M. Pignol. Generating remote control interfaces for

complex appliances. In Proceedings of ACM UIST, pages 161-170,

New York, NY, USA, 2002. ACM.

A. Olwal and S. Feiner. Unit: modular development of distributed

interaction techniques for highly interactive user interfaces. In Pro-

ceedings of GRAPHITE, pages 131-138, New York, NY, USA, 2004.

ACM.

[16] G. Reitmayr and D. Schmalstieg. Opentracker-an open software ar-

chitecture for reconfigurable tracking based on xml. In Proceedings

of IEEE VR, page 285, Washington, DC, USA, 2001. IEEE Computer

Society.

C. Sandor, A. Cunningham, U. Eck, D. Urquhart, G. Jarvis, A. Dey,

S. Barbier, M. Marner, and S. Rhee. Egocentric space-distorting visu-

alizations for rapid environment exploration in mobile mixed reality.

In To appear in VR 2010: Proceedings of the IEEE Conference on

Virtual Reality, Waltham, MA, USA, March 2010.

[18] S. Uchiyama, K. Takemoto, K. Satoh, H. Yamamoto, and H. Tamura.
Mr platform: A basic body on which mixed reality applications are
built. In Proceedings of ISMAR, page 246, Washington, DC, USA,
2002. IEEE Computer Society.

[19] G. van Rossum. Extending and embedding the python interpreter re-
lease 2.5. Technical report, Python Software Foundation, 2006.

[20] 1. M. Wilbers, H. P. Langtangen, and A. Odegard. Using cython to
speed up numerical python programs. 2008.

[7

—

[9

—

[10

[11

[12

[14

[15

[17

A CLASSIFICATION BASED ON THE UBIQUITOUS COMPUT-
ING SURVEY:

A.1 Type and background

Group / company: Wearable Computer Lab, University of South
Australia, Adelaide, Australia

Time / manpower: Since Feb. 2009, 2-3 active developers
Development focus: Research

Research goals: Develop prototypes for new MR and AR tech-
niques.

Contact: Christian Sandor

Target environment: Mobile mixed and augmented reality.
System description: TINT is a lightweight framework for aug-
mented reality application prototyping. TINT consists of a number
of components that help developers to create new AR applications
in Python and C/C++ easily. All compo- nents have a Python
implementation - some may also have a C/C++ implementation
if higher performance is needed. There are several options to
access different hardware de- vices via sensors and process their
output within data pro- cessors. An advanced configuration system

sets up the com- ponents which allows easy adoption of different
platforms and environments. There is extensive record- and
playback- functionality built into the main application components,
so that all sensors and captured video images can be recorded into
sessions and played back later. Also TINT uses best-of- breed 3rd
party components/libraries that fit into the frame- work nicely to
avoid duplicate efforts and increase the sta- bility of the overall
framework.

A.2 Underlying technology

Language: Python, Cython, C/C++

Network protocol: Various TCP and UDP protocols

Supported platforms: Linux, Mac OSX

Scalability: Single host, single process

Underlying paradigm: Create applications and framework
extensions in pure python and replace performance critical parts
with Cython/C implementations.

A.3 Components

Types: Python objects provided by the framework.

Granularity: Medium (sensors, dataprocessors, video capture,
menus, views and controllers)

Description: Developer creates app by using Framework compo-
nents.

Instantiation: By application provided from developer.
Configuration: Platform specific and global settings are loaded
from schema validated config files.

Communication / lookup: P2P communication, multicast-dns
discovery

A.4 General information

Accessibility: Not specified

Level of abstraction: The programmer works with reusable frame-
work classes and libraries.

Modules and services: Application support (menus, controllers,
config), dataflow network (sensors, dataprocessors), 2D/3D render-
ing (framebuffer composer, simple scene graph)

Suitable for: TINT is designed to create prototypes for future mo-
bile devices and runs on standard pc/mac hardware.

Key publications: This paper.

