
Towards a Development Methodology for Augmented
Reality User Interfaces

Christian Kulas, Christian Sandor, Gudrun Klinker
Technische Universität München

Lehrstuhl f̈ur Angewandte Softwaretechnik
(kulas,sandor,klinker)@in.tum.de

ABSTRACT
In this paper we describe why we believe that the develop-
ment of Augmented Reality user interfaces requires special
attention and cannot be efficiently handled with neither ex-
isting tools nor traditional development processes. A new
methodology comprising both a new process and better tools
might be the best action to take.

A requirement analysis on issues regarding the process, the
user groups involved, and the supportive tools for Augmented
Reality user interface development is presented. This opens
up a number of research challenges covering the tools, the
process and the methodology as a whole. A new develop-
ment process which is a first attempt to meet the newly found
challenges is briefly outlined. This process relies on high
parallelism and extends previously learned insights with us-
ability evaluation matters. Following, our complementary
proposed tool set gets introduced in detail. This set again
profited mostly from new tools fitting in the usability en-
gineering realm, which so far has been mostly ignored in
the field of Augmented Reality. First steps towards a de-
velopment methodology for the creation of Augmented Re-
ality user interfaces, tackling the found requirements, are
thereby made. Finally, our planed future steps are shown,
meant to bring the development methodology further along,
by solving important, but achievable, remaining challenges.

INTRODUCTION
One of the main activities in Augmented Reality user inter-
face development, which is inherently multimodal, is the ex-
perimentation with different interaction techniques because
it is such a young field. These have to be designed, imple-
mented and evaluated. An important research issue here is to
establish a development methodology that covers these three
sub-activities and links them together more closely.

We believe the main groups of developers participating in
Augmented Reality user interface development (Figure 1)
are:

 Programmer

 Usability

 Engineer

 Designer

User

Change UI

Implementation

Evaluate User

Performance

Change User

Interface Design

Solve tasks

using UI

 3D Designer

 Screen

 Designer

 Interaction

 Designer

Figure 1: Use cases of all basic participating groups in
the process (UML Use case diagram)

Programmer The programmer changes the implementation
of the user interface by writing and editing low level code.

3D Designer This type of designer is concerned with cre-
ating 3D interaction / presentation elements which are to
make an appearance in the user interface. An example
for a 3D presentation element might be the landscape for
SHEEP [11].

Screen DesignerThe focus of this designer is the actual
screen layout, that is what is presented to the user at which
location on screen.

Interaction Designer This designer wants to fine-tune the
interactions the user can experience. She will set which
multimodal inputs trigger which actions.

Usability Engineer The quality assurance of the usability
of the user interface is point of interest for the usability
engineer. This person combines all the roles of conducting
usability studies in one. He selects, briefs, and debriefs
the users for the study, prepares the evaluation materials,
conducts and logs the actual study and finally analyzes
and evaluates the results.

1

User The user actually uses the user interface by navigating
through it in an attempt to accomplish certain tasks. For
example she might want to place a roof on a building she
is constructing within an architectural Augmented Reality
application.

We identified several crucial requirements for each of these
individual groups and for the development team as a whole
that are presented in this paper. We see our work as first
steps towards a methodology with a supporting set of tools
for the development of Augmented Reality user interfaces
addressing these requirements.

Building on our DWARF framework [2], we have already
successfully tested [11] a new methodology for user inter-
face design and implementation. The core idea was to let de-
signers and programmers work simultaneously in the same
room. In this paper we would like to present a new usability
evaluation tool that allows us to further add simultaneous us-
ability evaluation by usability engineers. The tool logs data
about the user interactions and visualizes it to the usability
engineers in real time, thus extending the work presented by
Lyons and Starner [9].

The remainder of the paper is organized as follows: In the
sectionThe Problemwe describe the requirements for a new
development methodology. The sectionResearch Challenges
lists numerous open questions. The sectionOur Approach
describes our prototypical methodology. Finally, the section
Future Workdiscusses the next steps we intend to take.

THE PROBLEM
The development of Augmented Reality user interfaces re-
quires special attention for multiple issues. These issues are
presented in this section.

Process Issues
In traditional user interface development, a waterfall or an
extended waterfall process (Figure 2) is followed [12]. Start-
ing with the phase design, it is proceeded to the phase imple-
mentation and finally a phase evaluation. These phases are
run highly sequential with no or little room for feedback or
dependencies. This type of process works well if you have
enough details about the design space and in general can an-
ticipate implications of design changes well in advance.

Design

Implementation

Evaluation

Figure 2: Basic waterfall process (UML Activity dia-
gram)

Missing Tools
However, the task of developing Augmented Reality UIs is
in itself still rather cumbersome due to the lack of tools to
support the main three phases.

Design Authoring tools for design would accelerate the de-
velopment significantly because they would allow quick
assembling of user interface prototypes with various lev-
els of functionality. Existing tools like Maya or 3DStu-
dio can be leveraged by the 3D Designer, Adobe Photo-
shop or Microsoft Paint might be an aid for the Screen
Designer. The support for the Interaction Designer is im-
proving with projects like The Designers Augmented Re-
ality Toolkit [10], which offers a collection of extensions
to the Macromedia Director multimedia-programming en-
vironment, but still there is much work to be done.

Implementation The actual implementation of Augmented
Reality user interfaces is made easier by a few frameworks
such as DWARF [2], and Studierstube [15]. Implementa-
tion usually takes place in an Integrated Development En-
vironment (IDE). Like mentioned earlier, first frameworks
for designers are starting to emerge [10], but usability en-
gineers are still kept in the dark.

Evaluation There are a number of imaginable tools, like au-
tomatic gathering and visualization of user performance
data, allowing the quick generation of usability evaluation
results, which could then be fed back to earlier phases.
Unfortunately this class of tools is also in very short sup-
ply for Augmented Reality applications.

If we had proper tools like this, the generation of intermedi-
ate milestones would be much faster and thus make it more
bearable to encounter problems in a post implementation
evaluation phase, because a new iteration of design and im-
plementation can be put together rather easily again.

Additionally, tools which actually do exist, usually only ad-
dress their specific problem domain, with no or little inte-
gration with other related tools. In Augmented Reality ap-
plications, objects are registered in 3D [1]. Therefore, after
completing a screen design, using a 2D tool, the designer
usually needs to map the therein contained objects to 3D.
She might have decided to keep a presentation component,
keeping the user up-to-date on an important variable, like the
amount of rescued sheep in a sheep herding application [11],
in close reach, head-fixed [4] in the left right corner, all the
time.

Currently, the screen designer has to re-create her earlier 2D
design in 3D using a completely different tool for mapping
3D objects. It would be much more efficient if she could
instead import her 2D design into a 3D registering applica-
tion. But this is not possible without much better inter-tool
integration.

Unclear Design Space
For traditional desktop software, vast amounts of knowledge
on usability data exist, which created extensive and complete
standard guidelines [16] which limit the design space to a
known usable and working subset. Since Augmented Real-

2

ity applications are a comparably new development, such a
knowledge base is still to be built. So for now we are con-
fronted with a vast design space and a big uncertainty which
designs will work and which will not.

Unclear Non-Functional Requirements
Traditional software can also benefit from clear non-functional
requirements. For example a web-site has to be navigate-
able, which meaning is defined in web-style guides together
with all other non-functional requirements which are proven
to be sufficient. But which non-functional requirements do
we have to impose on Augmented Reality user interfaces?
The graphical portions of the UI should probably be concise
but what exactly does this mean?

Summary
Because of the lack of tools and uncertainties, traditional wa-
terfall cycle processes are not suitable for developing Aug-
mented Reality user interfaces efficiently. But even a new
process cannot make up for the lack of suitable tools. So a
new methodology based on both a better process and usable
tools is needed.

RESEARCH CHALLENGES
The previously identified problems result in a number of
research challenges on all areas tools, process and on the
methodology as a whole which are the focus of this section.

On tools the main questions are:

• Which tools? There are numerous paths to take in sup-
porting the main three user groups, resulting in a large
design space for tools. It is a challenge to gain clarity re-
garding which type of tools will have the largest benefit.

• Tool integration? By integrating tools with each other, a
much better work-flow between these tools can be lever-
aged building on tool chains. Where are the limits to inte-
gration and which integrations are reasonable at all?

• Tool mapping? Some tools might be useful to more than
one user group thanks to a high level of integration. The
presentation of multiple tools simultaneously to certain
user groups might have more value, than the sum of each
single tool on it’s own merit. It is a challenge to figure out
which tool combinations map best to which user groups.

• Tool automation? The more knowledge on UI design is
accumulated, the more ideas for automation features in
tools can be generated. For example, basic clear cut de-
sign principles which have been shown to apply in cer-
tain scenarios could be enforced in design tools. Since we
still lack knowledge in this area, it is unclear which au-
tomations will be indeed feasible in the future. Instead of
testing against known usability problems, there have been
interesting approaches in web interface development, like
WebRemUSINE [13], which try to automatically identify
new usability problems. This is done by looking at the
level of correspondence between how users actually per-
form tasks and the intended system task model. This idea
might also be applicable to Augmented Reality user inter-
faces.

On the process the main challenges are:

• Limit to parallelism? By conducting multiple different
development phases at the same time much better feed-
back can be attained. But how parallel can the process get
without losing reasonability? The different phases of the
process have undeniably certain dependencies which will
probably not allow a total parallel execution.

• Formal process? Only by obeying a formal process simi-
lar to Extreme Programming [3], built on reasonable rules
and process patterns [5], a highly parallel development
can be accomplished. But which practices do apply the
best on Augmented Reality user interface development?

• Persistence of UI experiments? It is in the nature of rapid
proto-typing to experiment with different variations of the
UI in quick succession. However, after testing a number
of UIs, it is very desirable to be able to roll-back into a
previously evaluated UI iteration since it may have turned
out to be best suited after all. It is a challenge to build
the process in a way to ensure the results of these prior
experiments are not lost.

Finally, on the methodology as a whole:

• Limits? Is the new methodology only suited to create pro-
totypes for temporary experimentation or might it actually
yield usable products which can be deployed at the site of
the customer?

• Validation? Does the methodology actually fully meet all
requirements we impose on it? Answering this is also
a challenge, since the exact definition of requirements is
still a non trivial task.

Going deeper into the research challenges, we will now take
a closer look at the tool questions. The issues regarding
the process and the methodology as a whole cannot be con-
sidered in any more detail until more future work has been
done.

Tool Combination Design Space
In an attempt to tackle some of the tool research challenges,
it is helpful to correlate a list of likely supporting tools with
all three groups in a matrix like found in table 1. Following
this, the value of the different pairs can be assessed to learn
which challenges are the most worthwhile to be confronted
first.

IDE or Authoring
A 2D Paint Tool is probably only beneficial to the screen
designer such as a 3D Modeller also probably cannot serve
anyone but the 3D designer. Basically these are already au-
thoring tools. An authoring tool for interaction could of
course also help the interaction designer putting together
new interactions. Generally, any integrated development en-
vironment or authoring tool should be a great benefit to all
three user groups if they are adopted enough to their re-
quirements. For any programmer an Integrated Develop-
ment Environment (IDE) is already a standard tool to rely

3

Tool Designer Programmer Usability
Engineer

2D Paint Tool + - -
3D Modeller + - -

IDE or + + +
Authoring

Performance Logging - o +
& Visualization
Wizard of Oz + + +

Automatic Testing + + +
Monitoring Tool - + +
Interaction Graph + + +

Table 1. Tool combination design space matrix

on. Likewise, the usability engineer could use an authoring
tool to put together user performance visualizations or to de-
fine tasks for the user to attempt which performance is then
automatically measured.

Performance Logging & Visualization
User performance data is only directly interesting to the us-
ability engineer and only has an indirect impact on the de-
signer and programmer. However, the programmer might
benefit from this feature, too. If it was automated enough to
do some initial rough tuning concerning usability, the pro-
grammer might be able to later skip implementation code
changes fixing obvious usability flaws.

Wizard of Oz
A Wizard of Oz [14] tool could actually benefit all three user
groups. The interaction designer could use it to test in ad-
vance if certain interactions pan out or not, before actually
prototyping them. The programmer could leverage this tool
for feature dummy implementations to make early integra-
tion tests between partially incomplete features. The usabil-
ity engineer could conduct simulated full-featured usability
studies by faking yet missing functionality to gain insights
into usability aspects, which would normally not be attain-
able until much later into the implementation phase.

Automatic Testing
Automatic testing tools of various sorts would again bene-
fit all three user groups. There could be a tool to check for
conformity of standard design guidelines, which would ease
the life of the designers by avoiding trivial design errors. A
similar tool to JUnit could quickly double check mandatory
functionality, after code refactoring has taken place by the
programmer. Once enough usability knowledge in the area
of Augmented Reality has been accumulated, hard usabil-
ity guidelines might crystallize themselves. Their confor-
mity could be again tested against by automatic tools, which
would remove the strain of the usability engineer to evaluate
these then trivial usability parameters. This enables him to
focus on the still unclear and less studied usability questions.

Monitoring Tool
A monitoring tool visualizing the state of the distributed Aug-
mented Reality application and the communication between

all components should obviously be useful for a program-
mer. The usability engineer could also profit from such a
tool, if it was integrated with performance visualization. He
would use the tool to indicate which data he is currently most
interested in, which is then visualized.

Interaction Graph
In multimodal interaction, inputs from different media chan-
nels trigger defined actions. For example, by combining a
speech token with a gesture, a wall could be deleted in an
architectural Augmented Reality application. A tool could
visualize this interaction graph, display received tokens and
in general show the progress of the user in his current task.
Such a tool could be beneficial to all three user groups. The
interaction designer could use such a tool to visualize his
work and even create new interaction paths with it. The pro-
grammer could use it to learn at which interaction his code
got stuck to ease debugging. Finally the usability engineer
could use such a tool to learn in which interaction the user
is currently struggling, if this is not obvious through other
means.

Summary
As a result, we are confronted by a large amount of research
challenges covering multiple areas, of which we only had
chance to look closer at tool questions for now. Even here it
is still unclear if the list of tools is complete and how much
the tool integration can cover. By evaluating tool with user
group correlations, initial ideas were gained which missing
tools seem to be the most promising. Although our focus is
mostly on tools, we will now briefly cover our process ap-
proach in the next section after which our attempt at meeting
a number of tool needs is detailed, too.

OUR APPROACH
To make up for the lack of tools, a better process offering
much more feedback between phases is necessary. In fact
we believe that only maximizing this feedback can offer us
enough efficiency until our knowledge base is large enough
to allow older, slower paced, sequential processes.

To maximize this feedback, we propose to run all three phases
design, implementation and evaluation in parallel (Figure 3).

Design Implementation Evaluation

Figure 3: Proposed parallel process (UML Activity dia-
gram)

We already learned a few valuable lessons regarding the pro-
cess within the earlier SHEEP project [11]. In Jam ses-

4

sions, development takes place at run time obeying same
time & place principles. This allows acrowded groupwork-
ing with peer code reviews and on-the-fly insertions of al-
tered system components, for quick integration tests. These
sessions proved to increase the development speed signifi-
cantly. This process also allows playful exploration, because
sub-components which have an impact on the user experi-
ence can be swapped during run-time effortlessly, enabling
quick assessment of different variations. Iterative, continu-
ous development is an implication of this.

When a high level of tool integration is achieved to support
the efforts of all user groups in all three development phases
a very fast, feedback-driven and parallel process to develop
Augmented Reality user interfaces like proposed might be
indeed realizable.

Now, our newly developed supportive tools for the usabil-
ity engineer are presented in detail, after which a few other
older tools are also briefly introduced. Finally, a possible
tool combination for the usability engineer is presented.

Usability Evaluation Tools
At Technische Universität München we have developed a
framework for usability evaluations in the field of Augmented
Reality, covering both process as well as software issues, ap-
plicable on applications based on DWARF [8].

Our momentary focus lies on the therein newly developed
software tools, but before presenting these in detail it is worth-
while to give a quick overview of the intended process for
conducting usability evaluations by looking at a possible room
setup (Figure 4).

Figure 4. Room setup for usability evaluations

The setup might look like this atcrowded groupworking
when even an end user is taken into account while debugging
the system. The user is placed at a suitable distance of the
usability engineer / evaluation monitor who is busy entering
observations (Data Entry) into the usability logging system
(Data Logging) while also monitoring what the user actually
sees on screen (Action Visualization) and while monitoring
real-time visualizations of measured usability data (Data Vi-
sualization).

Multiple peers or the evaluation monitor himself might at the
same time observe internal system behavior and even fine
tune the system on the fly while observing usability implica-
tions immediately.

This lab-based approach is usually considered as “Local Eval-
uation” with both the user and the usability engineer in the
same place at the same time. We believe, this is still the
best way to capture qualitative usability data on Augmented
Reality user interfaces. However, when Augmented Real-
ity systems are used on a more frequent basis globally, a
remote evaluation approach using Remote Usability Evalu-
ation Tools [7] might be more reasonable. Here the system
usually presents a wizard-based dialog to the user, asking
her details about her opinion on the usability problem after
recognizing a critical usability incident [6] automatically or
after the user triggered the dialog herself. By design, this
requires quite a lot of effort on the part of the user her-
self. Additionally, great care has to be taken regarding issues
of user privacy when passing on collected data without her
prior consent.

With this in mind, the mentioned software components are
now covered in more detail. The core component is a fully
automated logging tool to capture events from the running
Augmented Reality system. For this it is important to men-
tion that Augmented Reality systems, which are built mod-
ularly leveraging the DWARF framework, communicate in-
ternally mostly by means of CORBA based events running
through event channels which can be effortlessly tapped into
by any logging tool interested in doing so, such as the newly
developed logger.

A manual data entry tool (Figure 5) can be leveraged to take
quick written notes for later review, which are also directly
passed on to the data logging component.

Figure 5. Dialog to enter usability data manually

All performance measurements can finally be visualized in
real-time during usage with a number of highly flexible and
adaptable scripts.

Figure 6 shows a number of different sample visualizations.
It was decided to base the visualization off the GNU General

5

Public licensed (GPL) third party toolploticus1 for multiple
reasons. Its’ scripting language proved to be well suited for
rapid prototyping of new visualizations while maintaining a
high level of ease of use. Additionally, it already had all the
2D plotting support we required, that is it supports out of the
box all standard 2D plotting styles including line plots, filled
line plots, range sweeps, pie graphs, vertical and horizontal
bar graphs, time lines, bar proportions, scatter plots in 1D or
2D, heat-maps, range bars, error bars, and vectors.

Numerics, alphanumeric categories, dates and times (in a
variety of notations) can be plotted directly. There are ca-
pabilities for curve fitting, computing linear regression, and
Pearson correlation coefficientr. There is a built-in facil-
ity for computing frequency distributions. Means, medians,
quartiles, standard deviations, etc. can also be computed out
of the box meeting our needs for default statistical functions.

For the first sample study we conducted [8], the four shown
visualization types have been assembled.

Before elaborating the details of these different types, the
usability data log file format must be exposed. It is a stan-
dard ASCII file in which each line represents exactly one
log file entry. Each entry must have six components to gain
unambiguous data. The first mandatory component encom-
passes the detailed currentdate & timeof the log entry for
later time dependent data mining. The second component
stores thestudyname, since multiple studies are to be con-
ducted, which are not to be mixed up. For similar reasons
and to facilitate intra-user comparisons and task time taking,
userandtasknames are stored in the third and fourth com-
ponent. The most interesting components are the two last
ones since they store the logged eventtypewhich might be
e.g. a Button-click and its’ correspondingvaluee.g. Hit or
Miss.

Leveraging this log file format, the visualization types from
top left to bottom right shown in Figure 6 are:

Relative Error
This script is the least flexible, since it requires thevalue
fields to be exactly Hit or Miss for the to be analyzedstudy,
user, task, andtypecombination. It visualizes the resulting
accumulated hit-ratio (y-axis) over time (x-axis). The final
hit-ratio is additionally printed separately in a box.

Task Time Range
Requiring only the specification of the to be analyzedstudy,
a range of all task (x-axis) completion times (y-axis) aver-
aged over all participating users is visualized. These times
are extracted from the log file by filtering for special event
types, which mark the begin and end of any giventask.

The actual ranges can be easily visualized in different ways.
Shown is the mean and standard deviation. The biggest dot
indicates the mean times while the error bars extend to the
standard deviation. The smaller light dots show the individ-
ual task completion times of allusers. The stars denote task
1http://ploticus.sourceforge.net

completion times outside of the standard deviation. Finally
below eachtaska number is printed, which depicts the num-
ber of averaged tasks, which is equal to the amount ofusers
who took thistask.

We also prepared a median version which renders a big dot
at the median time for each task while the box-plot extends
to the 25th and 75th percentile. Error-tails extend to the bor-
der values while smaller light dots show the individual task
completion times for allusers.

All range visualization parameters can be easily adopted on
a case-by-case basis.

Value Timeline
This visualization has the same parameter requirements like
the Relative Errorvisualization. Here it is merely shown
which event typevalue (y-axis) occurred at what time (x-
axis).

Figure 6 actually shows a slight modification of this basic
visualization. An additional line visualizing a study specific
additional eventtypeandvaluedevelopment was added ef-
fortlessly to be able to better spot usability flaws of a specific
nature [8].

Absolute Bars
Requiring thestudy, taskand typeparameters, absolute to-
tals (y-axis) of all differentvalues(x-axis) are rendered in
horizontal bars. If nouser is specified, it will output aver-
age bars together with a specification on how many users the
script averaged over. However, if auser name is given, it
will output bars using data from this specific user only.

Sample usability study results [8] using the above tools are
out of scope for this paper but it should be mentioned that
our sample study was very promising.

Other Tools
In this section other older tools developed by us, which sup-
port the first two phases are briefly introduced because they
will offer insights on future integration.

Our framework for multimodal interactions is an UI archi-
tecture described by a graph of multiple in-/output and con-
trol components (User Interface Controller (UIC)) ([11], Fig-
ure 7 bottom-left).

The UIC can be visualized, and since it shows the complete
user interface interaction graph, it is very useful for interac-
tion designers. This tool is a very close approximation of the
interaction graph tool, mentioned earlier. However, it is still
nowhere feature complete.

The arbitrary event streams within DWARF, as well as all
participating communicating components can be visualized
by our general-purpose monitoring tool DWARF Interactive
Visualization Environment ([11], Figure 7 bottom-right) which
currently serves as a debugging tool for programmers.

6

Figure 6. Sample real time visualizations of logged usability data

Given all these tools, a combination which should hopefully
prove to be useful to the usability engineer in future scenar-
ios is now presented.

Usability Engineer Tool Combination
In Figure 7 the UIC, the monitoring tool and the user perfor-
mance real-time visualizations are combined on one screen.

The monitoring tool (bottom right) shows raw unfiltered event
communication between service components while at the
same time showing all running services with full details on
their states. The current version of our monitoring tool is
really only useful for the programmer, but extensions are
imaginable which make this worthwhile for the usability en-
gineer after all (see sectionFuture Work). The UIC (bottom
left) might help the usability engineer to understand where
the user is currently within the interaction graph.

Finally the real-time user performance measurement win-
dows (top row) should enable the evaluation of the actual
usability at the same time. While the first two tools could
although reveal that a certain action was successfully trig-
gered by the user, it does not become apparent how many
tries there were, at which time frame, or how many errors
there have been until this final tool is taken into considera-
tion.

Observations in the top windows will likely usually lead to
implementation fine tuning to e.g. trigger actions differently
or they might reveal the need for a whole new service to

e.g. install a data filter for better usability, thereby in effect
overhauling the design.

FUTURE WORK
There are still many challenges to solve providing us with
multiple objectives for future work. Of course it is future
work to implement the missing tools and achieve a high
level of integration to be able to better follow the proposed
methodology. One of the first easiest integrations to do is to
add Wizard of Oz functionality to our UIC.

Additionally, the monitoring tool could be integrated with
the user performance visualizations to make this tool feasi-
ble to the usability engineer. Currently, a fixed set of scripts
for visualization have to be pre-selected prior to the study by
the usability engineer which will then be constantly updated
with live data. However, it would be much preferable if the
usability engineer could change these visualizations on-the-
fly by e.g. clicking on a map representing the system state
and exchanged events, similar to what the monitoring tool
already offers to DWARF.

An authoring tool for the interaction designer is another very
critical next step, since this type of user still has clearly the
worst tool support. Being overly visionary, this tool could
even reach bootstrapping proportions. That is the designer
starts out with a very basic authoring tool based on Aug-
mented Reality and uses this tool to extend itself by build-
ing new widgets which can create ever so bigger interactions
slowly creating a full-blown user interface.

7

Figure 7. Usability engineer tool setup mockup

Currently we only aim at mastering a better process of man-
ually designing, implementing and evaluating user interfaces
for Augmented Reality applications, but in the future we will
also want to invest in proactive UIs. Here the application
evaluates itself during runtime and changes its’ own user
interface design, and corresponding implementation, auto-
matically on-the-fly. For example, by observing user behav-
ior patterns over time, it would be possible to take note of
never used functionality which could be hidden to generate
a less obstructing UI. The process itself needs much more re-
finement which will be achieved by conducting more exper-
iments gradually accumulating hopefully in a formal model.

In summary, traditional development processes and current
tools are ill-suited for Augmented Reality, and only by im-
proving on both the process as well as developing new or
integrating existing tools a more suitable platform for creat-
ing Augmented Reality user interfaces can be established.

REFERENCES
1. R. T. AZUMA , A Survey of Augmented Reality, Presence, 6 (1997),

pp. 355–385.
2. M. BAUER, B. BRUEGGE, G. KLINKER , A. MACWILLIAMS ,

T. REICHER, S. RISS, C. SANDOR, AND M. WAGNER, Design of a
Component–Based Augmented Reality Framework, in Proceedings of
the 2nd International Symposium on Augmented Reality (ISAR
2001), New York, USA.

3. K. BECK, eXtreme Programming Explained: Embrace Change,
Addison-Wesley, 1999.

4. S. FEINER, B. MACINTYRE, M. HAUPT, AND E. SOLOMON,
Windows on the World: 2D Windows for 3D Augmented Reality, in
ACM Symposium on User Interface Software and Technology,
pp. 145–155.

5. A. GRANLUND AND D. LAF, A pattern-supported approach to the
user interf ace design process, 1999.

6. H. HARSTON AND J. CASTILLO, Critical Incident Data and Their
Importance in Remote Usability Evaluation, in Human Factors and
Ergonomics Society 44th Annual Meeting, pp. 590–593.

7. N. KODIYALAM , Remote Usability Evaluation Tool, Master’s thesis,
Virginia Polytechnic Institute and State University, 2003.

8. C. KULAS, Usability Engineering for Ubiquitous Computing,
Master’s thesis, Technische Universität München, 2003.

9. K. LYONS AND T. STARNER, Mobile Capture for Wearable
Computer Usability Testing, in Proceedings of IEEE International
Symposium on Wearable Computing (ISWC), October 08-09 2001,
Zurich, Switzerland, pp. 69–76.

10. B. MACINTYRE, J. D. BOLTER, E. MORENO, AND B. HANNIGAN ,
Augmented Reality as a New Media Experience, in Proceedings of
the 2nd International Symposium on Augmented Reality (ISAR
2001), New York, USA.

11. A. MACWILLIAMS , C. SANDOR, M. WAGNER, M. BAUER,
G. KLINKER , AND B. BRÜGGE, Herding Sheep: Live System
Development for Distributed Augmented Reality, in Proceedings of
ISMAR 2003.

12. D. J. MAYHEW, The Usability Engineering Lifecycle, Morgan
Kaufmann Publishers, 1991.

13. L. PAGANELLI AND F. PATERNÒ, Intelligent Analysis of User
Interactions with Web Applications, in ACM Symposium on
Intelligent User Interfaces, San Francisco, CA, 2002.

14. T. REICHER AND T. KOSCH, Software Design Issues for
Experimentation in Ubiquitous Computing, in The Second Workshop
on Artificial Intelligence in Mobile Systems (AIMS 2001), Seattle,
Washington, USA, August 4, 2001.

15. D. SCHMALSTIEG, A. FUHRMANN , G. HESINA, Z. SZALAVARI ,
L. M. ENCARNAÇÃO, M. GERVAUTZ, AND W. PURGATHOFER,
The Studierstube Augmented Reality Project, Presence, 11 (2002).

16. B. SHNEIDERMAN, Designing the User Interface, Addison-Wesley
Publishing, 1997.

8

