
Herding Sheep:
Live System Development for Distributed Augmented Reality

Asa MacWilliams, Christian Sandor, Martin Wagner, Martin Bauer,
Gudrun Klinker and Bernd Bruegge

Technische Universität München, Fakulẗat für Informatik
Boltzmannstraße 3, Garching bei München, Germany

(macwilli, sandor, wagnerm, bauerma, klinker, bruegge)@in.tum.de

Abstract

In the past, architectures of Augmented Reality systems
have been widely different and taylored to specific tasks. In
this paper, we use the example of theSHEEPgame to show
how the structural flexibility ofDWARF, our component-
based Distributed Wearable Augmented Reality Frame-
work, facilitates a rapid prototyping and online develop-
ment process for building, debugging and altering a com-
plex, distributed, highly interactive AR system.

TheSHEEPsystem was designed to test and demonstrate
the potential of tangible user interfaces which dynamically
visualize, manipulate and control complex operations of
many inter-dependent processes.SHEEP allows the users
more freedom of action and forms of interaction and collab-
oration, following the tool metaphor that bundles software
with hardware in units that are easily understandable to the
user. We describe how we developedSHEEP, showing the
combined evolution of framework and application, as well
as the progress from rapid prototype to final demonstration
system. The dynamic aspects ofDWARF facilitated test-
ing and allowed us to rapidly evaluate new technologies.
SHEEP has been shown successfully at various occasions.
We describe our experiences with these demos.

1. Introduction

In the past, architectures of Augmented Reality (AR) sys-
tems have been widely different and taylored to specific
tasks. For example, AR systems in task-centered, well-
structured activities such as aircraft maintenance are tradi-
tionally differently organized than AR systems for ubiqui-
tous computing environments. In [2], we presented the de-
sign of DWARF, the Distributed Wearable Augmented Re-
ality Framework, claiming that a component-based frame-
work had key advantages for users and developers.

It is time to verify and update these claims. We have
used and tested DWARF to build a series of different ap-
plication platforms — the most recent one being SHEEP,
the Shared Environment Entertainment Pasture [21]. In this
paper, we show at the example of SHEEP how the inher-
ent structural flexibility of DWARF was crucial to a rapid
prototyping and online development process for building
and simultaneously debugging and altering a complex dis-
tributed, highly interactive AR system. The dynamic nature
of DWARF allows developers and users to collaboratively
test and further develop a running system. The result is
a continuously running testbed to rapidly build prototypes
and extend them to full systems.

We begin by presenting our motivation for building a
multimodal, multiplayer game with DWARF, relating our
approach to previous work. Next, we present the archi-
tecture of the SHEEP system. We show how existing and
new DWARF components were used in the areas of track-
ing, sheep simulation, visualization, interaction and mid-
dleware. Afterwards, we describe the process of develop-
ing SHEEP and present required tools for continuous sys-
tem development, integration and testing. We conclude by
discussing the lessons we learned from developing and pre-
senting the system and suggest options for future improve-
ments to our framework.

1.1. Background

The DWARF project started in 2000 as a research platform
for mobile and distributed AR systems. The framework
containsservicesfor position tracking, three-dimensional
rendering, multimodal input and output and task modeling,
which are used to build complete augmented reality applica-
tions. Distributedmiddlewaremanages the communication
between services. The applications are designed to be very
flexible and allow the user a great degree of freedom; they
run in many different environments and hardware configu-
rations.

1



BeamerCameras

Hand

Head-mounted
display

Laptop

Palmtop

Marker tree

Magic wand

Microphone

Virtual sheep

Tangible sheep

Figure 1. Game setup

Previous Systems Using DWARF, we have previously
built experimental systems for campus navigation [2],
vizualization of prototype automobile designs [11], ma-
chine maintenance [7] and prototype vehicle construc-
tion [8].

In each of these systems, a group of 5 to 50 students,
often new to the field of AR, used the existing DWARF ser-
vices to create an initial prototype within a timeframe of up
to three months. In two projects that were later continued
with industry partners [8, 11], the DWARF middleware and
individual services (e.g. for rendering) were replaced with
proprietary components that were already in use in the in-
dustry partners’ computing environment.

Why SHEEP? The SHEEP system was designed to test
and demonstrate the potential of tangible user interfaces
which dynamically visualize, manipulate and control com-
plex operations consisting of many inter-related processes
and dependencies. On the basis of this project, we were
able to evaluate and refine the architectural claims of
DWARF and consolidate the system services, as well as dis-
tributed tracking, online calibration and multimodal inter-
action technologies. The concepts were presented at last
year’s ISMAR in Darmstadt.

Each of the previous DWARF systems was designed for a
specific, often industrial application. In SHEEP, we wanted
a less directed application that would allow the users more
freedom of action, letting us experiment with various forms
of interaction and collaboration. This lead to the idea of a
multiplayer shepherding game centered around a table with
tangible and virtual sheep in a pastoral landscape.

The Game The game is centered around a pastoral land-
scape which is projected onto a table from above (figure 1).
On the table, a herd of virtual sheep roams around the pas-
ture. Each virtual sheep is aware of the others’ positions.
It tries to stay close to the rest of the herd while avoiding
collisions with other sheep. When a player puts a tangible,

Sheep Simulation

Tracking Presentation

Interaction

<service>
UI Controller

<service>
Calibration

<adapter service>
ART Tracker

:PoseData

<external>
ART 

DTrack UDP

:PoseData

<service>
Sheep

:PoseData

:PoseData
Start Process

<service>
Sheep
Starter

<service>
Collision
Detection

:SoundOutput

:

<adapter service>
Speech
Adapter

:Input TCP

<external>
Speech

Recognition

:SheepData

<adapter service>
Viewer

EAI

<external>
VRML

Browser

<adapter service>
Sound
Service

:PoseData
:SheepData

:SoundOutput

:Input

: SheepData

: SheepData

<external>
Sound Player

Figure 2. System architecture: services ar-
ranged by subsystems. Services commu-
nicate via their abilities (circles) and needs
(semicircles). Third-party components are
shown in gray.

‘real’ sheep on the table, the virtual sheep recognize it as a
member of the herd and move towards it.

In order to add a new sheep to the game, the user points
at the table with a magic wand and says ‘insert.’ A new
sheep appears at the point where the wand touched the table.
Sheep can be removed from the game, too, with a touch of
the magic wand and the command ‘die.’

With a small palmtop computer, a player can pick up
a sheep. It then disappears from the table and appears on
the palmtop’s screen. The player can put the sheep down
somewhere else on the pasture.

Using a see-through head-mounted display, the user can
view the landscape three-dimensionally. He can pick up a
sheep with his hand and inspect it. He can color the sheep
by moving it into virtual color bars. Finally, he can put the
sheep back on the table where it then rejoins the herd.

Spectators can see a three-dimensional view of the land-
scape on the screen of a laptop that can be freely moved
about. The sheep appear in their correct three-dimensional
position, even when picked up by another player.

1.2. Related Work

The idea for the SHEEPsystem was heavily inspired by the
cow-painting demo fromStudierstube [17]. Other examples
for AR games include the well known ARQuake [25] and
AquaGauntlet [14].

Distribution of our system is handled using a CORBA
based middleware, which was first proposed in the context

2



ApplicationControl:LinuxPC

DTrackPC:WindowsPC SeethroughLaptop:WindowsLaptop

Wizard UI
Controller

CalibrationART Tracker

Sheep

Sheep
Starter

Collision
Detection

Speech
Adapter

Speech
Recognition

Viewer VRML
Browser

Sound
Service

Sound Player

IPaq UI
Controller

GodWearable:WindowsLaptop

Viewer VRML
Browser

IPaq:LinuxPalmtop

Viewer VRML
Browser

BeamerDisplay:WindowsPC

Viewer VRML
Browser

ART 
DTrack

God UI
Controller

Figure 3. System architecture by deployment. The boxes are services and external components; The
arrows indicate data flow. The system consists of three stationary and three mobile computers.

of VR applications by Kim et al. in the COVRA project [9].

There is quite a lot of effort going in the direction of
architectures and frameworks for developing AR applica-
tions in general. Typically, these systems work towards ab-
stracting from the idiosyncrasies of specific input and out-
put devices by generating more general interaction facili-
ties [12, 15, 16, 22, 26]. Most of them require configuration
parameters, such as a specification of the input and output
devices in use or the network adresses of different compo-
nents. These parameters must be known at least at compile
time, sometimes even before.

There is some effort towards facilitating the configura-
tion of an AR system. The Studierstube project [23] has a
modular design based on the Open Inventor architecture al-
lowing rapid prototyping by scripting the system’s function-
ality. The AMIRE project [6] aims at an architecture that
allows easy authoring of AR content. In contrast to these
approaches, our concept allows a dynamic reconfiguration
or substitution of components at runtime without the neces-
sity to restart or even recompile other parts of the systems.
However, most ideas from the projects just mentioned may
easily be added to our system. In addition, these projects
may incorporate some of our components, e.g. for interac-
tion control, using the DWARF open source distribution.

Recently, systems have started evolving towards allow-
ing a static configuration of tracking devices before starting
the system [18]. Our design approach goes one step further
and focuses on the possibility to have a system that gets
configured dynamically at runtime as new devices appear
or new services are started.

2. System Architecture

In this section, we present the architecture of the SHEEP

system, showing how existing and new DWARF components
were used in the areas of tracking, sheep simulation, visu-
alization, interaction and middleware.

2.1. Overview

The architecture of the SHEEP demonstration system is
shown in figure 2.

The basic software components of SHEEP are DWARF

services. The services can be divided into the subsystems
tracking, sheep simulation, visualizationand interaction.
Many of the DWARF services form adapters to connect
to third-party software (shown in gray), e.g. for tracking,
speech recognition or 3D rendering.

The same service can have one or more instances running
in the network. For example, tracking services are running
as a single instance, sending positional data to all interested
components. Other services, such as user interface con-
trollers or VRML viewers, are provided in many instances.
For example, a separate user interface controller is available
for each user, and each display has its own VRML viewer.
Finally, any number of sheep services can be running on the
machines in the network.

The services are distributed on several machines, as
shown in figure 3. In DWARF, we follow the tool
metaphor [3], bundling software with hardware in units that
are easily understandable to the user. For example, the
palmtop system performs the complete 3D rendering locally

3



Figure 4. Interaction via a tangible sheep

(although slowly), rather than retrieving an externally ren-
dered video image from a server. The services run on differ-
ent machines running Linux, Windows and Mac OS X, and
are written in Java and C++. They use CORBA-based mid-
dleware to find each other dynamically and communicate
via wired and wireless ethernet.

2.2. Tracking

The tracking subsystem serves as the primary connection
between the real and virtual world. Currently, we use the
optical DTrack system from ART GmbH — a stationary
outside-in optical tracking system which is able to track up
to 10 marked users, objects and devices within a4m × 4m
area at submillimeter precision.

The tracking package of figure 2 shows the simple pipe
and filter architecture of the SHEEP tracking subsystem.
TheDTracksystem is abstracted using a service that trans-
forms its UDP stream to severalDWARF pose data event
streams, containing position and orientation. These are pro-
cessed by a calibration service yielding positional informa-
tion that fits the needs of the remaining SHEEPapplication.

The calibration procedure was very simple: in a first
step, we manually calibrated a magic wand such that its
tip’s position could be used as a pointing device. The cal-
ibration of the projected image on the table was achieved
by defining the origin of the ART tracker’s coordinate sys-
tem be in the lower left corner of the table image and by
aligning the z-axis with the left border of the image. This
allowed us to implement a simple and convenient one-click
process for calibrating arbitrary objects with a rigidly fixed
ART marker. The user only has to align the object with the
left border of the projection table, point to the object’s de-
sired center using the magic wand and click on a button in
the GUI of the calibration service. Although this calibration
procedure is rather imprecise, it proved to be sufficient for
our purposes. As with most components of the SHEEPsys-
tem, the focus was on ease of use rather than high precision.

The dynamic, testbed-like character of DWARF encour-

Figure 5. Two views of the same landscape:
beamer and see-through laptop

ages and supports this kind of ‘just good enough’ rapid pro-
totyping — providing the option to start conceiving a more
precise calibration routine and adding it to the SHEEP sys-
tem whenever deemed necessary.

2.3. Sheep Simulation

The behavior of the virtual sheep is based on a distributed
variant of a simulated flock of birds [19].

Each sheep is a single process that is connected to the
other sheep and receives their position information. It then
tries to stay close to the center of the herd while at the same
time avoiding collisions with other sheep.

In addition to the virtual sheep we also have a toy plastic
sheep (figure 4). It is tracked and can be moved freely by the
user. For the virtual sheep, the tracked position information
of the toy sheep is indistinguishable from the virtual sheep.
Thus, users can guide the herd by moving the plastic sheep
— the virtual herd will center around it and follow it.

The sheep simulation at this point is not highly advanced.
For example when introducing a second plastic sheep, the
virtual herd will center in the middle between the two plas-
tic sheep. This component could be easily replaced by a bet-
ter simulation — and, in fact, several variants of the simula-
tions were used and dynamically exchanged in early stages
of the system. For some time we had the sheep only run-
ning around in circles until a more stable simulation code
was ready for deployment.

2.4. Visualization

The SHEEP scene is shown in several views: a beamer-
view displayed on the table, several mobile 3D-views on
tracked laptops, see-through views on head-mounted dis-
plays and simplified sheep presentations on palmtop com-
puters (Compaq iPAQ) (figures 4, 5, 6, 7). The views are
generated by different instances of 3D viewers running un-
der x86 Windows or StrongARM Linux.

4



Figure 6. View through head-mounted display

Scene descriptions are provided in VRML. A small
adapter service written in Java communicates via the Exter-
nal Authoring Interface (EAI) with a VRML browser, such
as Cortona from Parallelgraphics1 on Windows platforms,
and FreeWRL2 on the palmtops. The viewers interface to
the User Interface Controllercomponent (see section 2.5)
which maintains the state of the user interface. According
to the current state, viewers add or remove objects, such
as new sheep, from the scene and display them as speci-
fied by their actual properties. The viewers also interface to
tracking components to set their viewpoints and to position
tracked objects and virtual sheep.

We encountered various problems in implementing this
architecture of the viewing component, such as system in-
compatibilities and performance discrepancies across plat-
forms that made us provide several versions of VRML ob-
jects for different views. To get acceptable performance on
the iPAQ, we had to compile the EAI libraries of FreeWRL,
which are written in Java, into native code withgcj 3, yield-
ing a big performance boost from 0.01 to 0.3 frames/sec for
a scene containing 162 polygons in a 320 times 200 resolu-
tion (see figure 7) — which is still too slow, but is mainly
due to the lack of hardware acceleration and even worse the
lack of a floating point unit on the iPAQ.

Furthermore, the EAI is not set up to support the required
communication traffic (several 100 position updates per sec-
ond) and the dynamic nature of the scene descriptions when
sheep are added and removed at the user’s will. We encoun-
tered limitations in the use of the VRMLEXTERNPROTO
mechanism: Because of the EAI requirement that every ac-
cessable object has to have a predefined, unique name field,
all sheep that are potentially created during the course of
a game have to be planned for in advance when the scene
is described in the VRML code. The result is a rigid ob-
ject structure, too large for small demonstrations, and po-
tentially too small during a game with many users.

1http://www.parallelgraphics.com
2http://freewrl.sourceforge.net/
3http://gcc.gnu.org/java/

Figure 7. Display of 3D content on the iPAQ

Because of these problems, we are currently reimple-
menting our viewer based on the open-source Open Inventor
implementation Coin3D4. Due to the flexible architecture
of DWARF new experimental viewing components can be
brought into the system arbitrarily. They can co-exist and
mix with the current viewing components.

2.5. Interaction

Interactions in SHEEPwere implemented using theUser In-
terface ControllerDWARF service. The User Interface Con-
troller combines the functionalities of dialog control and
discrete integration. The software adapters for the input de-
vices emit tokens that are received by the User Interface
Controller. In the case of SHEEP these are: speech recog-
nition and collision detection for tangible interaction. Ac-
cording to the state of the user interface (which is kept in the
User Interface Controller) and the tokens that are received,
actions are triggered. These actions are dispatched to ser-
vices in the presentation layer and cause a change, addi-
tion or removal of display elements. The rule-based evalua-
tion of the user input is encapsulated into guards that check
whether a transition is legal.

We use Petri Nets to model multimodal interactions —
as is common practice in the area of workflow systems [1].
Figure 8 shows the flow of events within the Petri Net while
a user points the magic wand at a location on the table and
utters the word ‘insert’ in order to add a new sheep to the
pasture. The User Interface Controller receives two tokens
from the input drivers, as shown in the lower row of figure
8: one that represents the collision wand/table and one for
the ‘insert’ speech command. These tokens are placed onto
places in the Petri Net. After all places on incoming arcs of
a transition are full, the transition is triggered, resulting in
the creation of a new sheep.

The User Interface Controller is based on the Petri Net
framework Jfern5 which provides large parts of the func-
tionality needed for this component. The Petri Nets that

4http://www.coin3d.org
5http://sourceforge.net/projects/jfern

5



"Insert"

Figure 8. Realization of a multimodal point-and-speak user interface with a Petri Net within the SHEEP
game. The second row shows the tokens inserted in the Petri Net by the interactions in the first row.

model the multimodal interactions for a user are written in
XML. From these descriptions Java classes are generated.
Jfern also allows the graphical display of the Petri Net and
its current state. These graphical representations are very
useful for debugging.

Future work on this service will include the collection
of interaction patterns to form an libary of interaction Petri
Nets. Because of the common token format, it is possible to
reuse a Petri Net within different applications and even with
different input devices, as long as they deliver the needed
tokens to the User Interface Controller.

2.6. Middleware

DWARF is based on distributedservices. The services are
managed by distributed CORBA-based middleware. On
each network node of a DWARF system, there is oneservice
manager; there is no central component. The service man-
ager controls its local services and maintains descriptions
of them. Each service manager cooperates with the others
in the network to set up connections between services.

The stationary computers are connected together using
standard 100 megabit ethernet; the laptops and palmtop are
connected using IEEE 802.11b wireless ethernet.

The DWARF services are realized as separate processes
and threads within single processes. Distributed middle-
ware, consisting of CORBA and several DWARF service
managers, connect the services together.

Upon startup, each service registers itself, via CORBA,
with its service manager running on the local machine,

which listens for connections on a well-known TCP port.
Since the current implementation of the service manager
does not run on Windows, the Windows machines must con-
nect to a service manager on a specified remote host. The
middleware is lightweight enough to run on the Linux-based
palmtop as well as the full-sized machines.

The service managers running on the different machines
communicate with one another using SLP and CORBA and
set up connections between the services. The services then
use CORBA method calls or CORBA notification service
events to communicate.

The format of communication between the services is
specified in CORBA IDL (interface definition language).
Some services have CORBA interfaces with specified meth-
ods that are called by other services; most, however, com-
municate using CORBA structured events. Events sent over
the network via the CORBA notification service incurred a
latency of approximately 3 ms in our setup.

The implementation of the DWARF service manager
uses the open-source OmniORB CORBA implementation6,
which is also used for the services written in C++. Addi-
tionally, it uses OmniNotify, a CORBA Notification Ser-
vice implementation based on OmniORB. Both OmniORB
and OmniNotify were cross-compiled to Linux StrongARM
so that the middleware could run on the palmtop. Services
written in Java use OpenORB, an open-source Java CORBA
implementation7, and JavaORB, its predecessor, which was
necessary for the Java 1.1 virtual machine needed to control

6http://omniorb.sourceforge.net
7http://openorb.sourceforge.net

6



the Cortona VRML browser under Windows.
To find services managed by other service managers, the

service managers use OpenSLP8, an implementation of the
Service Location Protocol SLP. This allows services to be
found based on type and boolean predicates over named at-
tributes, which proved to be completely sufficient.

The API of the middleware is specified in CORBA
IDL and was slightly extended from previous versions of
DWARF. In particular, the concept of sessions was in-
troduced, allowing services to retrieve information about
their communication partners at run time. For example, the
VRML display adds a new sheep to the scene graph when a
new session from a sheep service is established.

For future versions of the framework, the middleware
will be ported to additional platforms (notably Windows;
Mac OS X support has already been implemented). Also,
the speed with which services find each other needs to be
improved; currently, this can take up to several seconds.

3. Development

In this section, we describe how we developed SHEEP. It
shows the combined evolution of framework and applica-
tion, as well as the progress from rapid prototype to final
demonstration system. We also present several tools we de-
veloped to help us test and integrate the final system.

3.1. Development Process

The development of SHEEP took place from April to
September 2002 with the goal to demonstrate a running sys-
tem at ISMAR’02 on September 30. Aside from the au-
thors, participating developers included five students. Be-
fore the final “hot phase” of development in the last month,
developers participated on a part-time basis.

Iterative approach The development of SHEEP did not
proceed in a linear fashion from specification to implemen-
tation. Rather, we used an iterative approach, regularly re-
assessing the progress made in service implementation and
system integration. We then modified our target accord-
ingly; it was more important for us to have a working sys-
tem in time for the demo presentation than to have a fully
developed game.

Initial concept The initial concept of a multiplayer game
was conceived in April. After several discussion rounds in
our augmented reality seminar, we decided on the shepherd-
ing scenario. This scenario included several features that
were not implemented in time for the demonstration system,
due to the extra hardware and development time they would

8http://www.openslp.org

have required: a virtual wolf to chase the sheep, manipula-
tions to the landscape such as moving trees, sheep correctly
crossing bridges, a “paint-the-sheep” user interface on the
palmtop, and an installation CD-ROM for spectators who
bring their own laptops and wish to participate in the game.

Mapping onto services As a first step, we mapped the
functionality of the scenario onto existing and new DWARF

services. This was mostly straightforward. For example,
we obviously needed a viewer service to render the three-
dimensional scene, and we obviously needed a tracking
service for the ART tracking hardware we planned to use.
Also, we decided to model each sheep as a separate service
(rather than one single ‘herd’ service) to further experiment
with the distributed nature of DWARF and to demonstrate
its ad hoc, peer-to-peer connectivity in a heterogeneous en-
vironment — potentially allowing spectators at ISMAR to
add and control sheep from their own laptops.

In other cases, it was not quite so clear; for example,
the collision detection service was a matter of discussion
for several weeks. Should collisions be detected by a sep-
arate service (the final solution) or within another existing
service, such as a viewer or tracker? In a similar manner,
we debated whether to use a central world model service or
not; finally, we settled on a simple decentral exchange of
SheepData events when a sheep died or changed color.

Design during implementation In these cases where the
mapping was difficult, we deferred the design decisions un-
til later in the project, and started to implement those ser-
vices whose design was already clear. This allowed us to
rapidly evaluate the new technologies and base our design
decisions on what was actually technically possible.

Service implementation For SHEEP, we needed to re-
fine existing services, implement new services based on old
ones, and implement completely new services. For exam-
ple, the ART tracking service was refined to allow a flex-
ible per-marker configuration, and the VRML viewer was
refined to allow more simultaneous manipulations to the
scene. The sheep simulation services were implemented
from scratch, and the UI controller was re-implemented to
use Petri Nets rather than finite state machines.

Integration tests During development, the dynamic as-
pect of the middleware facilitated testing; different versions
of services can be started in any order, and they are con-
nected together by the middleware.

We used this to perform integration tests as early as pos-
sible during development. The first tests were two-service
tests. For example, we tested an early version of the sheep
simulation with an early version of the VRML viewer, and

7



Figure 9. Simulation of arbitrary pose data

saw a single sheep flying in circles around the pasture. This
way, we ensured that the interfaces between services were
developed very early in the project, and that we would not
run into too many unpleasant surprises during integration
later on. The early versions of simple services were useful
to other developers — in this particular case, the circling
sheep could be used to debug the VRML viewer.

Jam sessions — development at run time Towards the
end of the project, we introduced ‘jam sessions’. All par-
ticipating developers met in our lab and programmed and
tested together. Inspired by ideas from extreme program-
ming [4], we reviewed code of individual services in pairs
to ensure the code’s correctness.

In the jam sessions, we performed larger integration tests
of three to twenty services, in order to test the entire sys-
tem’s functionality. The decentral nature of the middleware
meant that it was rarely necessary to shut down and restart
the entire system during testing; individual parts were al-
ways kept running. This meant that when a fault was found
in a service during an integration test, the service’s devel-
oper took that service off-line, repaired, recompiled and
restarted it. Since the rest of the system was still running,
the other developers could continue testing, and finally, the
improved service rejoined the rest of the system.

3.2. Development Tools

Test services Single DWARF services are not very useful
on their own. In fact, they are difficult to develop on their
own without additional services for testing and debugging.
For this, we implemented several test services, e.g. the man-

Figure 10. Monitoring and debugging tool for
distributed services

ual tracker, which can send arbitrary pose data to the rest of
the system (figure 9). Additionally, we used early versions
of services, such as the circling sheep, to test other services.

Monitoring tool As a general-purpose monitoring and
debugging tool, we used the DWARF Interactive Visual-
ization Environment (figure 10), which was developed in
parallel to the SHEEP system. In analogy to visual pro-
gramming interfaces in systems such as AVS [10], this tool
presents a graphical view of the network of interconnected
services that dynamically changes when the system config-
uration changes. It also allows developers to view arbitrary
event streams in the system, which proved invaluable for
debugging. In addition, the tool let us explain the running
system to technically interested spectators and illustrate the
distributed nature of DWARF.

4. Results

We completed the first version of the SHEEP system in
September 2002. Since then, it has been shown off at var-
ious occasions. This section sums up our experiences with
these demonstrations.

4.1. Demos

SHEEP was shown at ISMAR 2002’s demo session for the
first time in public. After some minor changes that en-
hanced the speed and stability of the system, we installed

8



SHEEP as a permanent exhibition in our lab and demon-
strated it to a mainly non-expert audience at various occa-
sions. Although we did not conduct any real studies on the
usability of the system, we got some anecdotical experience
regarding the feasibility of our approach for augmented re-
ality based games.

4.2. User Feedback

During a TUM open lab day, about 100 non-experts tried
out SHEEP. We got valuable feedback especially from chil-
dren. In general, the tool metaphors used in SHEEP were
very clear, the interactions involving the iPAQ, the see-
through laptop, the wizard with the magic wand and the tan-
gible sheep were understood almost without any explana-
tions. This observation underlines Svanaes’ and Verplank’s
claim [24] of good usability of magical metaphors. In con-
trast to the good results of interaction metaphors differing
from classical AR approaches, our implementation of 3D
overlays using a HMD had several problems. Direct inter-
action with floating menus being fixed in the user’s field of
view is problematic, see also [5].

Most people tried to keep their hand’s position in the
middle of their viewing frustum and were therefore unable
to complete the required interaction of touching colored
bars at the top of this frustum (see figure 11). In addition,
this interaction metaphor depends on the user’s physiog-
nomy. Children’s arms were in general too short to reach
the bars which were placed at a distance that is within easy
reach of an adult.

4.3. Developer Feedback

As we used the concepts of the DWARF framework, all de-
velopers were forced to use components running as sepa-
rate processes. This lead to a clear and lean definition of the
communication between different components in CORBA
IDL files. In addition, the relationship between components
of a running system could be displayed dynamically (see
figure 10). This allowed us the very late integration of sev-
eral student developers in the overall process without the
need for lengthy documentation of the current system state,
a simple look at the debugging tool sufficed. In fact, several
people unfamiliar with the SHEEP system were given and
completed successfully self-contained tasks such as adding
a collision detection component two weeks before the final
deadline of the overall system.

5. Conclusion and Future Work

The SHEEP project was successful in fulfilling our goals.
First, we managed to set up a well-equipped testing and

Figure 11. The view of the god player through
the HMD. Sheep can be colored by moving
them into one of the three color bars that are
displayed head-fixed.

development lab for experimentation with tangible multi-
modal interactions. Second, several essential framework
services, such as the ART tracking service, the calibration
service and the user interface controller were consolidated
from previous versions and integrated into the framework.
The problems we had with the VRML Viewer showed us the
need for a redesign of this service.

The work presented in this paper can be carried on in
three major directions: improvement of SHEEP, improve-
ment of DWARF and future DWARF projects.

Several extensions are possible to the SHEEPgame itself:
a virtual wolf that chases the sheep, improved sheep simu-
lation so that the sheep correctly cross bridges and avoid
rivers, user manipulations to the landscape such as moving
trees, or a “paint-the-sheep” user interface on the palmtop.
With the infrastructure we have now in our lab, we can start
to conduct usability studies and thus refine the interactions
even more.

The framework itself is constantly evolving, and will
continue to do so. Extensions that are already underway in-
clude a distributed three-dimensional world model, a more
powerful and efficient Inventor-based viewer implementa-
tion, more accurate and yet simple calibration mechanisms,
and other trackers. In addition, work is underway to let the
user switch between several simultaneously running appli-
cations on the distributed system.

Finally, new projects based on DWARF are underway. At
the time of writing, these include ARCHIE, a collaborative
architectural design system, HEART, a system for cardiac
surgery, and PONG, a set of simple augmented reality games
authored with a python-based scripting interface.

9



Acknowledgements

Special thanks go to our students Daniel Pustka, Franz
Strasser, Gerrit Hillebrand, Marco Feuerstein, Ming-Ju Lee
and Otmar Hilliges for developing many useful components
and tools, without these this work would not have been pos-
sible. The tracking system used for SHEEP was partially
on loan from BMW (TI-360). This work was partially
supported by the High-Tech-Offensive of the Bayerische
Staatskanzlei.

References

[1] W. A ALST, The Application of Petri Nets to Workflow
Management, The Journal of Circuits, Systems and
Computers, 8 (1998), pp. 21–66.

[2] M. BAUER, B. BRUEGGE, G. KLINKER ,
A. M ACWILLIAMS , T. REICHER, S. RISS, C. SANDOR,
and M. WAGNER, Design of a Component–Based
Augmented Reality Framework, in Proceedings of the 2nd
International Symposium on Augmented Reality (ISAR
2001), New York, USA.

[3] M. BAUER, B. BRUEGGE, G. KLINKER ,
A. M ACWILLIAMS , T. REICHER, C. SANDOR, and
M. WAGNER, An Architecture Concept for Ubiquitous
Computing Aware Wearable Computers, in Proceedings of
2nd International Workshop on Smart Appliances and
Wearable Computing 2002.

[4] K. B ECK, eXtreme Programming Explained: Embrace
Change, Addison-Wesley, 1999.

[5] D. A. BOWMAN and C. A. WINGRAVE, Design and
Evaluation of Menu Systems for Immersive Virtual
Environments, in VR 2001, pp. 149–156.

[6] R. DÖRNER, C. GEIGER, M. HALLER , and V. PAELKE,
Authoring Mixed Reality. A Component and
Framework-Based Approach, in Proceedings of First
International Workshop on Entertainment Computing,
Makuhari, Chiba, Japan.

[7] F. ECHTLER, H. NAJAFI, and G. KLINKER, FixIt, in
Demonstration at the International Symposium on
Augmented and Mixed Reality (ISMAR 2002), Darmstadt,
Germany.

[8] F. ECHTLER, F. STURM, K. K INDERMANN , G. KLINKER ,
J. STILLA , J. TRILK , and H. NAJAFI, The Intelligent
Welding Gun: Augmented Reality for Experimental Vehicle
Construction. Submitted to the International Journal of
Automation in Manufacturing Technology, 2003.

[9] S. KIM , U. YANG, N. KIM , and G. J. KIM , COVRA-CAD:
A CORBA based Virtual Reality Architecture for CAD, in
Proceedings of International Conference on Virtual Systems
and Multimedia.

[10] G. KLINKER, An Environment for Telecollaborative Data
Exploration, in Visualization ’93, IEEE Computer Society
Press, pp. 110–117.

[11] G. KLINKER , A. DUTOIT, M. BAUER, J. BAYER,
V. NOVAK , and D. MATZKE, Fata Morgana – A
Presentation System for Product Design, in Proceedings of
ISMAR 2002, Darmstadt, Germany.

[12] B. MACINTYRE, Exploratory Programming of Distributed
Augmented Environments, PhD thesis, Columbia University,
1999.

[13] T. OSHIMA, RV-Border Guards: A multiplayer
entertainment in mixed reality space, in Poster session of
IEEE International Workshop on Augmented Reality (IWAR
1999), San Francisco, USA.

[14] W. PIEKARSKI and B. H. THOMAS, Tinmith-evo5 - An
Architecture for Supporting Mobile Augmented Reality
Environments, in Proceedings of ISAR 2001.

[15] H. REGENBRECHTand M. WAGNER, Interaction in a
Collaborative Augmented Reality Environment, in
Proceedings of CHI 2002, Minneapolis, USA.

[16] G. REITMAYR and D. SCHMALSTIEG, Mobile
Collaborative Augmented Reality, in Proceedings of ISAR
2001, New York, USA.

[17] G. REITMAYR and D. SCHMALSTIEG, OpenTracker–An
Open Software Architecture for Reconfigurable Tracking
Based on XML, in Proceedings of VR, pp. 285–286.

[18] C. W. REYNOLDS, Flocks, Herds, and Schools: A
Distributed Behavioral Model, in Computer Graphics,
SIGGRAPH ’87 Conference Proceedings, pp. 25–34.

[19] C. SANDOR, A. MACWILLIAMS , M. WAGNER,
M. BAUER, and G. KLINKER, SHEEP: The Shared
Environment Entertainment Pasture, in Demonstration at
ISMAR 2002, Darmstadt, Germany.

[20] D. SCHMALSTIEG, A. FUHRMANN , and G. HESINA,
Bridging multiple user interface dimensions with augmented
reality, in Proceedings of the 1st International Symposium
on Augmented Reality (ISAR 2000), Munich, Germany.

[21] D. SCHMALSTIEG, A. FUHRMANN , G. HESINA,
Z. SZALAVARI , L. M. ENCARNAÇÃO, M. GERVAUTZ, and
W. PURGATHOFER, The Studierstube Augmented Reality
Project, Presence, 11 (2002).

[22] D. SVANAES and W. VERPLANK, In Search of Metaphors
for Tangible User Interfaces, in Proceedings of Designing
Augmented Reality Environments (DARE 2000).

[23] B. THOMAS, B. CLOSE, J. DONOGHUE, J. SQUIRES,
P. D. BONDI, M. MORRIS, and W. PIEKARSKI, ARQuake:
An Outdoor/Indoor Augmented Reality First Person
Application, in Proceedings of International Symposium on
Wearable Computers (ISWC 2000), pp. 139–146.

[24] S. UCHIYAMA , K. TAKEMOTO, K. SATOH,
H. YAMAMOTO , and H. TAMURA , MR Platform: A Basic
Body on Which Mixed Reality Applications are Built, in
Proceedings of ISMAR 2002, Darmstadt, Germany.

10


